

Modeling the synergism between the anti-angiogenic drug sunitinib and irinotecan in xenografted mice

<u>S. Wilson,</u> E. Grenier, M. Wei, V. Calvez, B. You, M. Tod, B. Ribba INRIA Grenoble Rhône-Alpes

New Model Development In Oncology

New Model Development In Oncology

• About 10 successfully developed compounds

- About 10 successfully developed compounds
- Almost always given in combination with chemotherapy

- About 10 successfully developed compounds
- Almost always given in combination with chemotherapy

- Sunitinib
 - Oral small-molecule angiogenesis inhibitor
 - Multi-targeted RTKi (targets PDGF, VEGF, EGF receptors)

Objective

Evaluate a potential synergistic effect between sunitinib, an anti-angiogenic agent, when given in combination with irinotecan, a cytotoxic agent

Sunitinib Monotherapy Experimental Data

Sunitinib Monotherapy Experimental Data

Model of Tumor Growth with Sunitinib Monotherapy

 $\frac{dD}{dt} = \lambda D \left(1 - \left(\frac{D}{K} \right)^{\alpha} \right)$ $\frac{dK}{dt} = bD^2$

Model of Tumor Growth with Sunitinib Monotherapy

dS $-p_sS$ dt $\frac{dD}{dt} = \lambda D \left(1 - \left(\frac{D}{K} \right)^{\alpha} \right)$ $\frac{dK}{dt} = bD^2 - \beta_{\rm S} p_{\rm S} S K$

Mixed Effect Parameter Estimation

Param	Mean (error %)	Var (error %)
D(t=0)	1.76 (7)	0.274 (10)
K(t=0)	7.43 (1)	0 (fixed)
λ	1.02 (4)	0.111 (20)
b	0.00168 (4)	0.142 (18)
р	2.12 (fixed)	0.5 (fixed)
β	0.0237(9)	0.08 (36)

Mixed Effect Parameter Estimation

Param	Mean (error %)	Var (error %)
D(t=0)	1.76 (7)	0.274 (10)
K(t=0)	7.43 (1)	0 (fixed)
λ	1.02 (4)	0.111 (20)
b	0.00168 (4)	0.142 (18)
р	2.12 (fixed)	0.5 (fixed)
β	0.0237(9)	0.08 (36)

Mixed Effect Parameter Estimation

Param	Mean (error %)	Var (error %)
D(t=0)	1.76 (7)	0.274 (10)
K(t=0)	7.43 (1)	0 (fixed)
λ	1.02 (4)	0.111 (20)
b	0.00168 (4)	0.142 (18)
р	2.12 (fixed)	0.5 (fixed)
β	0.0237(9)	0.08 (36)

What next?

What next?

We continue by considering the combination of sunitinib with the chemotherapeutic agent irinotecan (CPT-11)

Combined Therapy Experimental Data

Combined Therapy Experimental Data

Accurately model our data

Adding Chemotherapy

$$\frac{dS}{dt} = -p_s S$$
$$\frac{dD_1}{dt} = \lambda D_1 \left(1 - \left(\frac{D}{K}\right)^{\alpha}\right)$$

$$\frac{dK}{dt} = bD_1^2 - \beta_{\rm S} p_{\rm s} SK$$

Adding Chemotherapy

$$\frac{dS}{dt} = -p_s S$$
$$\frac{dD_1}{dt} = \lambda D_1 \left(1 - \left(\frac{D}{K}\right)^{\alpha}\right)$$

$$\frac{dK}{dt} = bD_1^2 - \beta_{\rm S} p_{\rm s} S K$$

Adding Chemotherapy

$$\frac{dC}{dt} = -p_c C$$

$$\frac{dS}{dt} = -p_s S$$

$$\frac{dD_1}{dt} = \lambda D_1 \left(1 - \left(\frac{D}{K} \right)^{\alpha} \right) - \beta_c p_c C D_1$$

$$\frac{dD_2}{dt} = \beta_c p_c C D_1 - k_c D_2$$

$$\frac{dD_3}{dt} = k_c D_2 - k_c D_3$$

$$\frac{dD_4}{dt} = k_c D_3 - k_c D_4$$

$$\frac{dK}{dt} = bD_1^2 - \beta_s p_s S K$$

$$D = D_1 + D_2 + D_3 + D_4$$

Log likelihood ratio test $\Delta L = -5.9955$ (p<0.01)

Log likelihood ratio test $\Delta L = -5.9955$ (p<0.01) Hence, we have significant improvement of the model under the hypothesis that sunitinib and irinotecan interact synergistically.

Model Simulations

Normalization Window

Conclusions

 Model of sunitinib and its combination w/ irinotecan in preclinical colorectal cancer

- Model supports that there is a synergistic interaction between the drugs
 - Interaction between irinotecan and sunitinib is proportional to amount of sunitinib given prior to irinotecan administration
 - Model exhibits evidence of a normalization window, consistent with [JAIN SCIENCE 2005] & [ARJAANS CR 2013]

Acknowledgements

Instituts thématiques

Institut national de la santé et de la recherche médicale

Join Us!!

We have open PhD and Postdoc positions. If interested, please contact Benjamin Ribba Benjamin.ribba@inria.fr